If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15z^2-31z+12=0
a = 15; b = -31; c = +12;
Δ = b2-4ac
Δ = -312-4·15·12
Δ = 241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-\sqrt{241}}{2*15}=\frac{31-\sqrt{241}}{30} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+\sqrt{241}}{2*15}=\frac{31+\sqrt{241}}{30} $
| 9x=−1.89x=−1.8 | | f+115=4 | | 5z^2+18z+19=0 | | 6y+2(y-5)=14 | | 2(3-x)=3(x-4)-15 | | -5x+3(x+3)=5 | | 2x-28=24 | | s=2s-34 | | 4x+5+-13x+39=180 | | 7t+2=9t-2 | | Y=30.55x–89.1 | | 9x+12=9x+7 | | b+48=4b | | 16=-83+11n | | 1.3x+2x=10 | | 30=26g | | 7+y4=10 | | 5x-54=26 | | 9.3x+5=x+19 | | 1+x/8=2 | | 0.3x+47=180 | | 3.2(2x+1)=3x+8 | | 2.4a+18.4=28.8 | | -2x^2+20x-68=0 | | X^2-9x-8075=0 | | h/4=1+9 | | 60=4x+15 | | (3x-10)=149 | | 11+(3x-7)=6x+5)-3x | | 8-9t=21-7 | | x-8.8=14.2 | | 0.5x=165 |